
Joint program
Algebra X Epitech

Epitech’s unit
Learning Outcomes

1



ADVANCED C++ - BABEL (B-CPP-500)

• Evaluate the difference between Unix and Windows operating systems when developping in C++.
• Create a working CMake file capable of building the project on both type of operating system.
• Evaluate the API of a C++ project or library to know if it fits your need.
• Design a C++ project using OOP principles.
• Produce an abstraction of sockets for Windows and UNIX.
• Write a technical documentation of the project.
• Construct a UDP protocol to transfer voice over a network.

ADVANCED C++ - R-TYPE (B-CPP-501)

• Evaluate the difference between Unix and Windows operating systems when developping in C++.
• Create a working CMake file capable of building the project on both type of operating system.
• Design a C++ project using OOP principles.
• Produce an abstraction of sockets for Windows and UNIX.
• Write a technical documentation of the project.
• Construct a correct game loop like a traditional game engine would.
• Create an Entity-Component-System to manage all entities of your game.
• Construct a network protocol to play the game over the internet.

APPLICATION DEVELOPMENT - DASHBOARD (B-DEV-500)

• Consume external REST APIs from your project.
• Integrate OAuth2 authentication in your project, especially to use external APIs.
• Design widgets using data from the consumed APIs.
• Manage the update of the widgets using time.
• Explain the choices made on the user interface to offer a good User eXperience.

APPLICATION DEVELOPMENT - REDDITECH (B-DEV-501)

• Consume an external REST API from your project.
• Integrate OAuth2 authentication in your project, especially to use external APIs.
• Integrate medias (picture, sound, video) correctly on your application.
• Write a technical documentation of the project.
• Identify which part of an API is valuable for the project.
• Defend the organisation used within the project group.
• Explain the choices made on the user interface to offer a good User eXperience.

1



FUNCTIONAL PROGRAMMING - EVALEXPR (B-FUN-500)

• Apply functional programming paradigm to develop the project.
• Examine the syntax of a complex mathematical expression.
• Write a program capable of parsing primitives number.
• Implement a Parsing Expression Grammar (PEG) describing any mathematical expression.
• Construct an Abstract Syntax Tree representing a mathematical expression.

FUNCTIONAL PROGRAMMING - HAL (B-FUN-501)

• Apply functional programming paradigm to develop the project.
• Implement a Parsing Expression Grammar (PEG) describing any mathematical expression.
• Construct an Abstract Syntax Tree representing a mathematical expression.
• Implement a read-eval-print loop (REPL) to use the program in a interactive manner.
• Demonstrate the Quality Assessment of the project.

YEAR-END PROJECT (B-YEP-500)

In this unit, students can choose one of three projects.
The learning outcomes depend on the choosen project.

ZIA (C++ TRACK)
• Evaluate the difference between Unix and Windows operating systems when developping in C++.
• Create a working CMake file capable of building the project on both type of operating system.
• Design a C++ project using OOP principles.
• Produce an abstract APIs to allow extension via plugins.
• Write a technical documentation of the project.
• Implement a simple HTTP server using TCP sockets.
• Identify how to mitigate problems to keep the service running as long as possible.

AREA (APPLICATION DEVELOPMENT TRACK)
• Consume external REST APIs from your project.
• Integrate OAuth2 authentication in your project, especially to use external APIs.
• Write abstraction to be able to easily add Actions and Reactions.
• Write a technical documentation of the project.
• Defend the organisation used within the project group.
• Explain the choices made on the user interface to offer a good User eXperience.

KOAK (FUNCTIONAL PROGRAMMING TRACK)
• Apply functional programming paradigm to develop the project.
• Construct an Abstract Syntax Tree representing a mathematical expression.
• Implement a parser and lexer
• Write a program capable of inferring types

2



• Generate executable code using LLVM

3


	Epitech's unit
	Epitech's unit
	Advanced C++ - Babel (B-CPP-500)
	Advanced C++ - R-Type (B-CPP-501)
	Application Development - Dashboard (B-DEV-500)
	Application Development - Redditech (B-DEV-501)
	Functional Programming - evalExpr (B-FUN-500)
	Functional Programming - HAL (B-FUN-501)
	Year-End Project (B-YEP-500)
	Zia (C++ track)
	AREA (Application Development track)
	KOAK (Functional Programming track)




