General information			
Course leader	PhD Goran Đambić, Assistant Professor		
Course title	Computer Vision Fundamentals		
Study programme			
Course status	Elective		
Year	Year 1, semester 2		
Number of credits	ECTS student workload coefficient	5	
and mode of teaching delivery	Number of hours (L+E+S)	60 (30 P + 30 V + 0 S)	

COURSE DESCRIPTION

1.1. Course objectives

The goal of a computer vision system is to create a real-world model from images or a sequence of images. The computer vision system recovers useful information about the scene from its two-dimensional projections. Students are given the basic knowledge needed to understand the process of computer vision and the ability to analyse and synthesize computer vision systems.

1.2. Conditions for enrolment in the course

No formal conditions. Student should be able to write programs comfortably in any object-oriented programming language.

- 1.3. Expected learning outcomes of the course
- LO1 Distinguish concepts from computer vision and complex systems based on computer vision
- LO2 Distinguish procedures, methods and algorithms in the field of image processing and computer vision
- LO3 Implement computer vision methods on a given problem
- LO4 Analyse the problems of computer-based systems
- LO5 Critically evaluate a computer solution based on computer vision
- 1.4. Course content

Definition of computer and robotic vision

Relationship between biological and computer vision

2D Shannon's theorem

Image geometry

Input of an image into the computer

Binary images

Histogram

Discrete binary image; Pattern matching; Topological properties of binary images

Size, position and orientation of the object

- Labelling of components
- Contour tracking algorithm

Fourier coefficients Illustrations of procedures and problem solving Image segmentation Spraying and merging method; Heuristic methods. Marginal segmentation Boundary detection; Hough method and generalized Hough method. Scene comprehension system models: Hierarchical, bulletin board model Descriptive formalisms; Demonstration of knowledge in computer and robotic vision systems

1.5. Teaching delivery modes:	 ☐ lectures ☐ seminars and workshops △ exercises ☐ remote learning ☐ field work 	 ☑ independent work ☑ multimedia and network ☑ laboratory ☑ mentoring ☑ other
1.6. Comments		

1.7. Student obligations

STUDENT ATTENDANCE

Class attendance is mandatory in the percentage prescribed by the Studies and examination regulations.

PASSING THE EXAM

The course has defined learning outcomes. In order for a student to pass the course, he/she must achieve a minimum of 50% of the points available for each learning outcome and collect a minimum of 50.01 points out of a possible 100 points per course.

1.8. Monitoring ¹ student work				
Class		Activity during	Seminar paper	Experimental
attendance		class		work
Written		Oral evam	Essay	Research
exam		Ul al exam		
		Continuous		
Project 100%	assessment of	Student report	Practical work	
		knowledge		
Portfolio		Homework		

1.9. Assessment and evaluation of student work during classes and the final exam

A grading system based is on a credit accumulation model combined with a defined submodel, providing a model of the grading method and checking the satisfaction of learning outcomes used in this course.

¹ IMPORTANT NOTES: Next to each method of monitoring student work it is necessary to insert an adequate share of each activity in ECTS credits, so the total number of ECTS credits corresponds to the credit value of the course. You can use empty fields for additional activities.

CONCRETE REVIEW OF EVALUATION METHODS

The maximum number of points that a student can earn in a course is 100. Grades are calculated according to the following criteria table within which the distribution of passing grades in terms of the number of points is applied.

Points	Grade
0,00 - 50,00	(1) unsatisfactory
50,01 - 58,00	(2) sufficient
58,01 - 75,00	(3) good
75,01 - 92,00	(4) very good
92,01 - 100,00	(5) excellent

The method of accumulating points is determined in this course in accordance with the elements of scoring as follows:

Criterion	Maximum points
Project	100
TOTAL	100

The way of taking the colloquiums, the learning outcomes it covers, as well as the implementation of exams and remedial exams are defined by the "Instructions for attending and taking the course".

1.10. Required reading (at the moment of submitting the joint study programme report)

• Szeliski: Computer Vision: Algorithms and Applications (Texts in Computer Science)

1.11. Additional reading (at the moment of submitting the joint study programme report)

• Prince: Computer Vision: Models, Learning, and Inference

• Nixon, Aguado: Feature Extraction & Image

1.12. Number of copies of required reading in relation to the number of students who currently attend a course

Title	Number of copies	Number of students
1.13. Methods of quality monitoring that ensur	re the acquisit	tion of knowledge, skills and
competencies.		

Monitoring the fulfilment of the desired learning outcomes is an important element of assessment because learning outcomes are the "guarantees" that the school gives to students, but also to employers and the wider community. Learning outcomes represent the minimum threshold that each student must achieve in order to pass the course. For a passing grade, the student must satisfy all the learning outcomes with the demonstrated knowledge, which corresponds to 50% of the points achieved for each learning outcome. The method of scoring based on learning outcomes is presented in the document "Instructions for attending and taking the course".